Reactions and Rates 3 Clicker Questions

Activity 3: Introduction to **Equilibrium**

> Trish Loeblein PhET

Learning Goals

Students will be able to:

- Use a physical experiment to model chemical equilibrium
- Sketch how the number of reactants and products will change as a reaction proceeds
- Predict how changing the initial conditions will affect the equilibrium amounts of reactants and products.
- Predict how the shape of the reaction coordinate will affect the equilibrium amounts of reactants and products.

Which best shows that equilibrium has been reached?

Correct rate graph Forward reaction rate =Reverse rate

Which could show that equilibrium has been reached?

Which best shows that equilibrium has been reached?

- A. The number of reactants is greater than the products
- B. The number of products is greater than the reactants
- C. The number of products is equal to the reactants
- D. The number of products varies little

At equilibrium, what would you predict is in the container?

A	+ 🥡) =>	AB) + 🌀		
Initial Conditions							
L	Sele	Select a reaction:					
π		🚯 + 🚯 🖌					
S	Start with how many						
-	A	?	50 🗘	BC?	50 🗘		
	AB	?	50 🌲	C?	50 🗘		
	+					_	
	Total average energy						
	" / \						
				P	otential ene	rgy	
	Reaction coordinate						

- A. Container will have mostly 👧 & 🚯
- B. Container will have mostly 👧 & 🕒
- C. Container will have a mixture of all four with nearly equal amounts
- D. No reaction will occur since the products and reactants have the same energy

Current Amounts						
	50 🜲					
Be	50 🗘					
AB	50 🗘					
C	50 🌲					

data

How will the equilibrium of second trial compare to the equilibrium of the first?

50 2

First experiment Second experiment

🕢 + 🔞 < 🔞 + 🔞

- A. Container will have only 🐼 🕲 🕲
- B. Container will have only 🚯 & 🚯
- C. Container will have a mixture of all four with more (3) & (6)
- D. Container will have a mixture of all four with more \bigcirc & \bigcirc

