Reactions and Rates 3 Clicker Questions

Activity $3:$
 Introduction to Equilibrium

Trish Loeblein
PhET

Learning Goals

Students will be able to:

- Use a physical experiment to model chemical equilibrium
- Sketch how the number of reactants and products will change as a reaction proceeds
- Predict how changing the initial conditions will affect the equilibrium amounts of reactants and products.
- Predict how the shape of the reaction coordinate will affect the equilibrium amounts of reactants and products.

Which best shows that equilibrium has been reached?

A
Amount of substance vs time

time
-Product -Reactants

Reaction Rates vs time

-Forward -Reverse

Correct rate graph

Forward reaction rate =Reverse rate

Reaction Rates vs time

Which could show that equilibrium has been reached?

A

Select a reaction:

Start with how many...

Initial temperature

B

C neither

All are at equilibrium within limits

Reaction coordinate
(2) $+38 \rightleftharpoons$ 장 + C

Reaction coordinate

Reaction coordinate

Current Amounts

Which best shows that equilibrium has been reached?

A. The number of reactants is greater than the products
B. The number of products is greater than the reactants
C. The number of products is equal to the reactants
D. The number of products varies little

At equilibrium, what would you predict is in the container?

A. Container will have mostly A \&
B. Container will have mostly (AB) \&
C. Container will have a mixture of all four with nearly equal amounts
D. No reaction will occur since the products and reactants have the same energy

Reaction coordinate Current Amou

data

How will the equilibrium of second trial compare to the equilibrium of the first?

First experiment Second experiment

Start with how many...

| $A ?$ | $50 *$ | $B C ?$ | $50 *$ |
| ---: | ---: | ---: | ---: | ---: |
| $A B ?$ | $50 *$ | $C ?$ | $50 *$ |
| | | | |

Select a reaction:			
	A + B		
Start with how many...			
A?	100 *	BC?	50 *
AB?	50 *	C?	50\| *

$$
\begin{aligned}
& \text { First trial } \\
& \begin{array}{ll|l|l|}
\hline \text { A? } & 50 \hat{\imath} & \text { BC? } & 50 \hat{\imath} \\
\text { AB? } & 50 \hat{\imath} & \text { C? } & 50 \hat{\imath} \\
\hline
\end{array}
\end{aligned}
$$

A?	100 ิ	Bc?	50
AB?	50 ค	c?	$50 \mid$

 (1 \&
\& B. There will be more C. There will be more D. There will be more \& \&
A. There will be more B2

At equilibrium, what would you predict is in the container?

Initial Conditions
 Select a reaction:

Start with how many...

A?	100 *	BC?	100 *
AB?	0 *	C?	0 *

A. Container will have only (B) \&
B. Container will have only (A) \& BO
C. Container will have a mixture of all four with more
\&
D. Container will have a mixture of all four with more (A) \& BO
data

Current Amounts

Reaction coordinate
(2)+

Options
Chart OptionsBarStripPie

