### Salts and Solubility

Clicker questions for 5 activities Each set of clicker questions and the activity can be downloaded from the Teaching Ideas database at PhET

by Trish Loeblein updated July 2008

### Salts and Solubility Activity1

Learning Goals Students will be able to:

- •Determine the chemical formula by observation of ionic ratios in solutions
- •Relate the simulation scale to real lab equipment through illustration and calculations
- •Predict the chemical formula of compounds with a variety of ion charge combinations

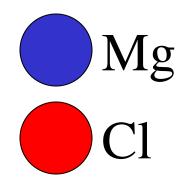
Trish Loeblein July 2008 Questions 1-3 are a pretest. 4-8 are reflective

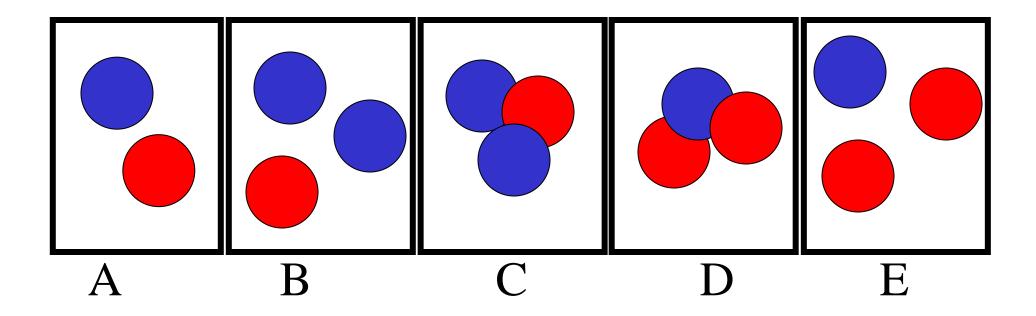
 Which is the formula for the compound made from M<sup>+1</sup> and N<sup>-2</sup>

> A.  $MN_2$ B.  $M_2 N$ C. MND.  $M_2 N_2$

2. Which is the formula for the compound made from
M<sup>+3</sup> and N<sup>-1</sup>

A.  $MN_3$ B.  $M_3 N$ C. MND.  $M_3 N_3$  3. Which is the formula for the compound made from
M<sup>+3</sup> and N<sup>-2</sup>

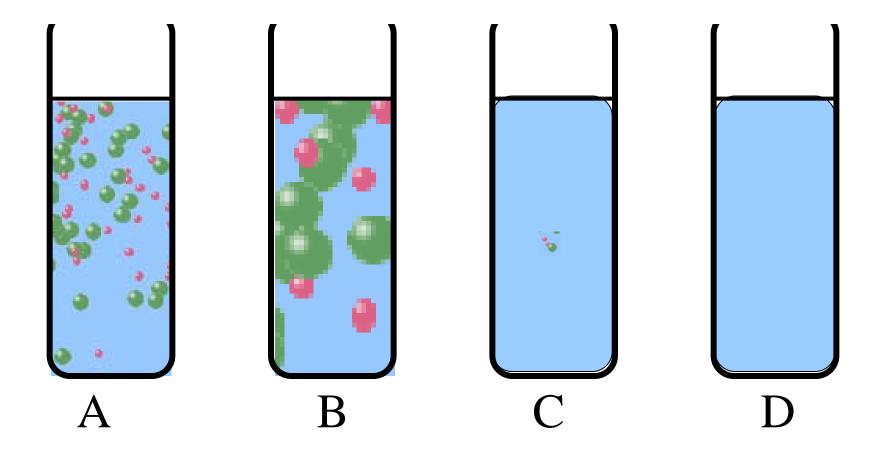

A. MN B.  $M_3 N_2$ C.  $M_2 N_3$ D.  $M_6 N_6$  4. I thought this lab was \_\_\_\_\_ USEFUL for learning about ionic formulas.


- A. veryB. mostlyC. barely
- D. not

5. I thought this lab was \_\_\_\_\_ ENJOYABLE for learning about ionic formulas.

A. veryB. mostlyC. barelyD. not

6. Which is the best drawing for Magnesium chloride in a water solution?






7. How would the drawing change if Magnesium chloride were changed to Magnesium oxide?

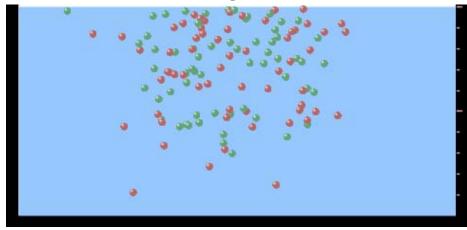
- A. The ratio of the ions would be the same
- B. The ratio would change to 1 magnesium for every oxide
- C. The ratio would change to 2 magnesium for every oxide
- D. You would have to use different colors

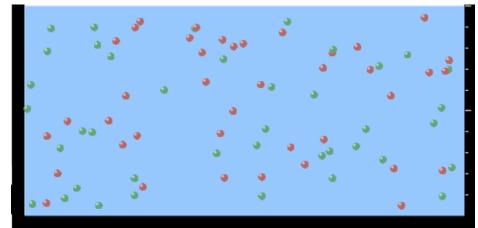
8. Which drawing best representshow large ions should be drawn in a5 ml test tube of water?

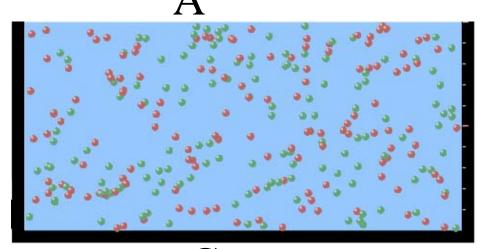


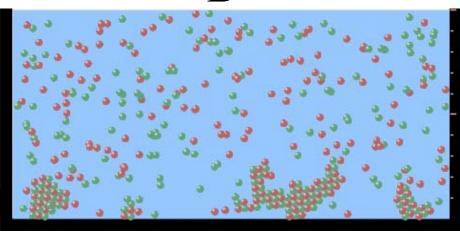
### Salts and Solubility Activity 2

#### **Learning Goals: Students will be able to:**


- Write the dissolving reaction for salts
- Describe a saturated solution microscopically and macroscopically with supporting illustrations
- Calculate solubility in grams/100ml
- Distinguish between soluble salts and slightly soluble salts macroscopically.


Trish Loeblein July 2008

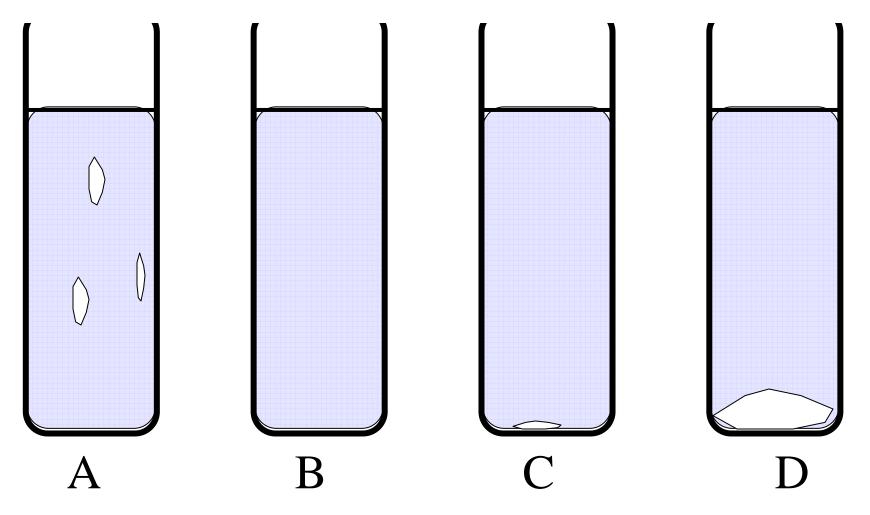

# 1. Which is correct for dissolving barium iodide in water ?


A. 
$$\operatorname{BaI}_{2(s)} \to \operatorname{Ba}_{(aq)} + 2I_{(aq)}$$
  
B.  $\operatorname{BaI}_{(s)} \to \operatorname{Ba}_{(aq)} + I_{(aq)}$   
C.  $\operatorname{BaI}_{2(s)} \to \operatorname{Ba^{+2}}_{(aq)} + 2I_{(aq)}^{-}$   
D.  $\operatorname{BaI}_{2} \to \operatorname{Ba^{+2}} + 2I^{-}$ 

## 2. Sue used *Salts* to learn about "saturated solution". Which image best shows a saturated solution?










D

C

3. Waldo added salt to a test tube of water to learn about "saturated solution". Which image best shows a saturated solution?



4. If you used the sim to test silver chloride, you would see 80 Ag<sup>+</sup> ions dissolved in 1E-17 liters. What is the solubility in 100 ml of water?

A. .0019 grams/100 ml water

- B. .00019 grams/100 ml water
- C. .0014 grams/100 ml water
- D. .00014 grams/100 ml water

### The calculation for AgCl example:

80 AgCl /6.02E23 AgCl/mole) \*(143.5grams/mole) = 2.4E -20 grams

1.9E - 20 grams/(1E - 17L) = .0019 grams/L

.0019 grams/L\* .1L/100ml=.00019 g/100ml B 5. You knew a salt was either sodium chloride or silver chloride.
If you put 1 gram in 10 ml of water in a test tube, and it looked like this -

### Which is it?

- A. Sodium chloride
- **B. Silver Chloride**
- **C.** This is not an identifying test

### Salts and Solubility Activity 3 Solution Equilibrium and K<sub>sp</sub>

Learning Goals: Students will be able to:

Describe the equilibrium of a saturated solution macroscopically and microscopically with supporting illustrations. (not covered in these questions)
Write equilibrium expressions for salts dissolving

•Calculate K <sub>sp</sub> from molecular modeling.

#### Trish Loeblein updated July 2008

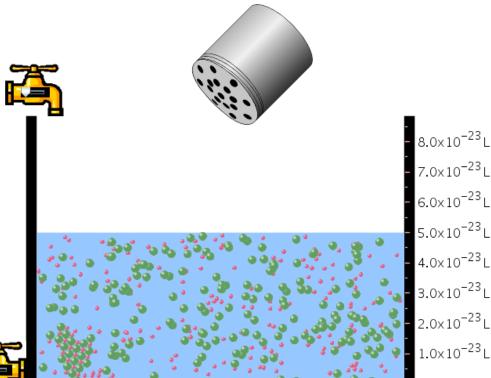

I simplified the reactions by omitting (aq), my students have found this helpful and they know that they must put it on tests.

 Table Salt
 Slightly Soluble Salts
 Design a Salt

1. Table salt dissolves in water:  $NaCl(s) \Rightarrow Na^{+} + Cl^{-}$ 

What is the correct K<sub>sp</sub> expression if s is the molar solubility Sodium chloride?

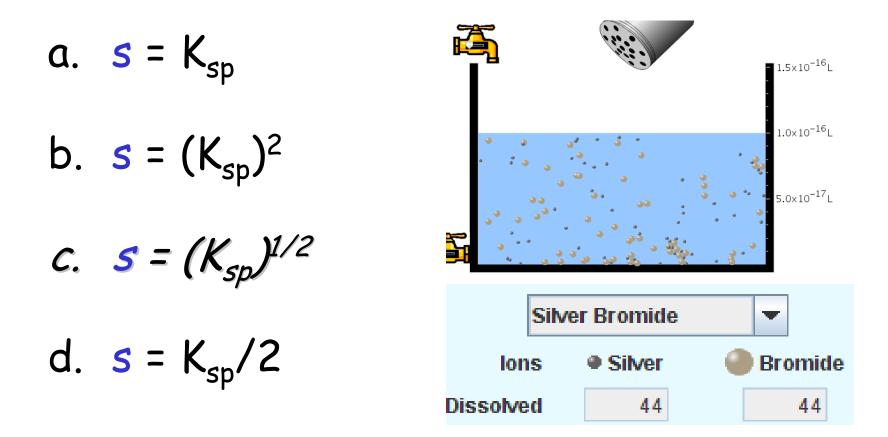
a.  $K_{sp} = s^2$ b.  $K_{sp} = 2s^2$ c.  $K_{sp} = s^5$ d.  $K_{sp} = 4s^4$ 



| Salt      |             |            |
|-----------|-------------|------------|
| lons      | Sodium      | Chloride   |
| Dissolved | 181         | 181        |
| Bound     | 19          | 19         |
| Total     | 200 ÷       | 200 ÷      |
| Water     |             |            |
| Volum     | e: 5.00E-23 | liters (L) |

Table salt dissolves in water: NaCl(s)  $\Rightarrow$  Na<sup>+</sup> + Cl<sup>-</sup>

### $K_{sp} = [Na^+][Cl^-]$


For every NaCl molecule that dissolves there was one Na<sup>+</sup> and one Cl<sup>-</sup> put into solution, so if we let s equal the amount of NaCl that dissolved then the expression substitutes to be  $K_{sp} = S^2$  2. Silver arsenate dissolves in water:  $Ag_3AsO_4(s) \Rightarrow 3Ag^+ + AsO_4^{3-}$ 

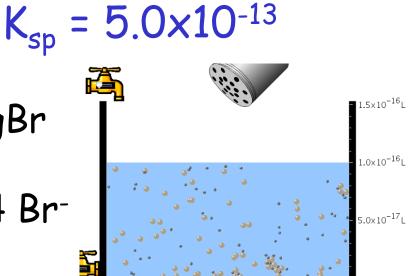
What is the correct K<sub>sp</sub> expression if s is the molar solubility Silver arsenate?

a. 
$$K_{sp} = s^2$$
  
b.  $K_{sp} = 3s^2$   
c.  $K_{sp} = s^4$   
d.  $K_{sp} = 3s^4$   
e.  $K_{sp} = 27s^4$ 



3. What is the proper expression for the molar solubility s of AgCl in terms of  $K_{sp}$ ?




## $K_{sp} = [Ag^+][Br^-]$ [Ag<sup>+</sup>]=[Br<sup>-</sup>] (44 of each are dissolved) $K_{sp} = s^2$ $s = (K_{sp})^{1/2}$

Answer to previous slide

### $AgBr \leftrightarrow Ag^+ + Br^-$

4. A saturated solution of AgBr in 1x10<sup>-16</sup> liters of water contains about 44 Ag<sup>+</sup> and 44 Br<sup>-</sup> ions as shown.

Suppose that  $K_{sp}$  were reduced to 2.5x10<sup>-13</sup>. How many  $Ag^+$  ions would you expect to see at equilibrium ?





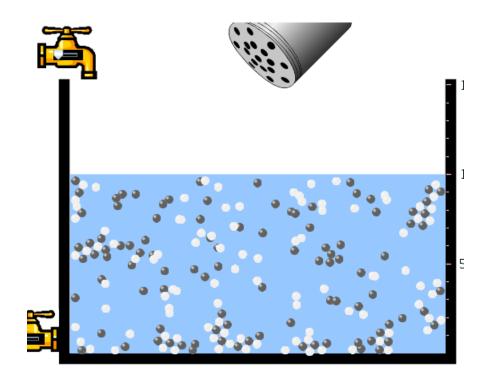
a. 11 b. 22 c. 31 d. 44 e. 88

$$AgBr \leftrightarrow Ag^+ + Br^-$$

Suppose that  $K_{sp}$  were reduced to 2.5x10<sup>-13</sup>. How many  $Ag^+$  ions would you expect to see at equilibrium ?

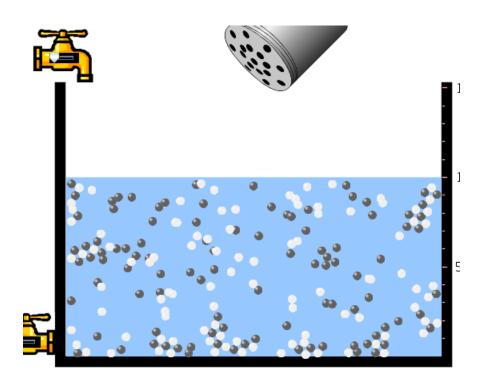
$$s = \sqrt{Ksp}$$

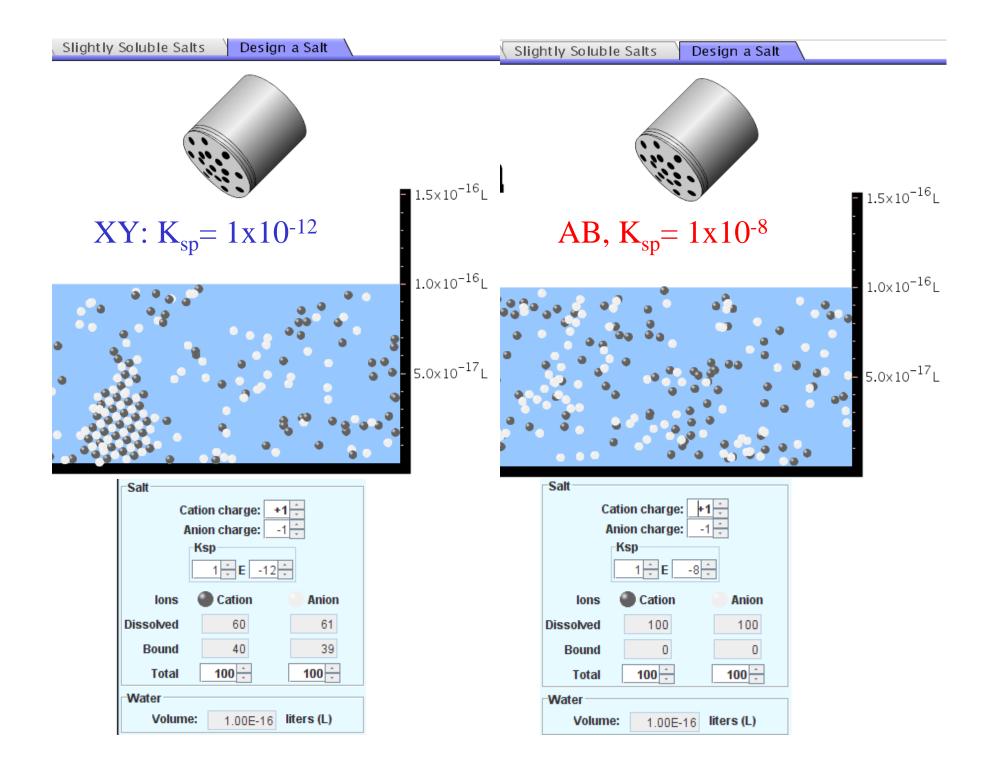
≈ 31


$$=\sqrt{2.5x10^{13}}$$

Answer to previous slide

5. Two salts have similar formulas XY and AB, but they have different solubility product constants.


**XY:** 
$$K_{sp} = 1 \times 10^{-12}$$


- AB:  $K_{sp} = 1x10^{-8}$
- Which one would be more soluble?
- A. AB
- B. XY
- C. The amount that dissolves would be the same.
- D. Not enough information



6. Two salts have similar formulas XY and AB, but they have different solubility product constants.

- XY:  $K_{sp} = 1 \times 10^{-12}$
- AB:  $K_{sp} = 1 \times 10^{-8}$ 
  - Which one would be more likely to precipitate?
- A. AB
- B. XY
- C. They behave the same
- D. Not enough information



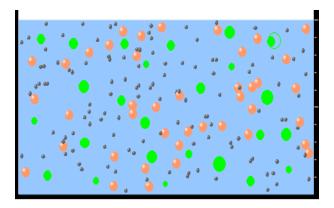


### Salts and Solubility Activity 4

The clicker questions do not directly address the goals because the are quantitative or have been well discussed by the group during the activities.

#### Learning Goals for 4: Students will be able to:

•Calculate Q.


•Predict what would be observed on a macroscopic level to a solution by comparing Q to  $K_{sp}$ .

•Use microscopic illustrations, to help explain the predictions.

•Use LeChatelier's Principle to predict how changing the amount of water will affect the solution.

#### Trish Loeblein updated July 2008

Two salts, **XB** and **AB**, are dissolved in a beaker of water. There are equal number of moles. They have different solubility product constants.



### **XB:** $K_{sp} = 1 \times 10^{-12}$ **AB:** $K_{sp} = 1 \times 10^{-8}$

If you added B<sup>-</sup> ions which would precipitate first?
 A.AB

#### **B. XB**

### **C.** They behave the same

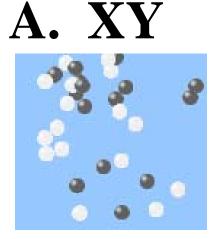
### **D.** Not enough information

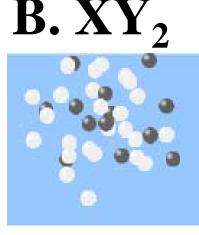
2. 0.010 moles of MgCl<sub>2</sub> and 0.020 moles of CuCl<sub>2</sub> are dissolved in 0.10 liters of water. A solution of NaOH is slowly stirred in. Which precipitate forms first?

$$Cu(OH)_2 K_{sp} = 2.2 \times 10^{-20}$$
  
 $Mg(OH)_2 K_{sp} = 6.3 \times 10^{-10}$ 

a.  $MgCl_2$  b.  $CuCl_2$  c.  $Mg(OH)_2$  d.  $Cu(OH)_2$ 

### Salts and Solubility Activity 5

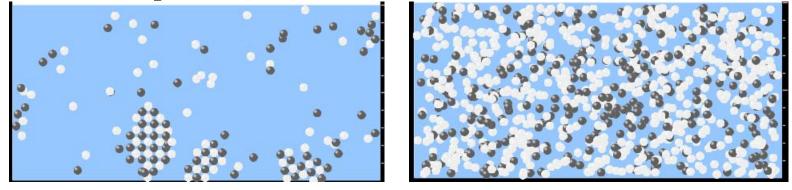

**Learning Goal for 5:** Students will be able to predict what would be observed on a macroscopic and microscopic level for salts with varying ionic charge given the  $K_{sp}$ .


Trish Loeblein July 2008

•

1. Which will have more dissolve particles in a saturated solution?  $K_{sp}=3 E - 13$ A compound made from

**C. no difference** 





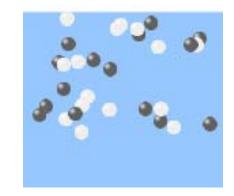

### Answer to 1

 $A.K_{sp} = x^2; x = 5E - 7$ 

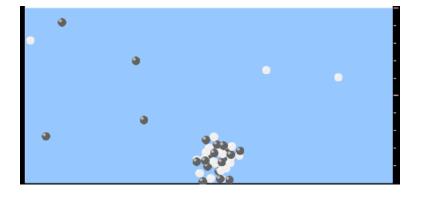
 $B.K_{sp} = (x)(2x)^2; x = 4E - 5$ 

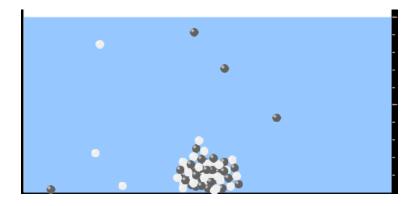


XY


 $XY_2$ 

# Why doesn't the mass of the particle matter?


### 2. Which will have more dissolve particles in a saturated solution? $K_{sp}=2 E - 15$ A compound made from


A. X<sup>+1</sup> and Y<sup>-1</sup> B. X<sup>+2</sup> and Y<sup>-2</sup> C. no difference

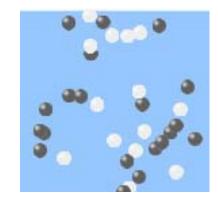




### Answer to 2

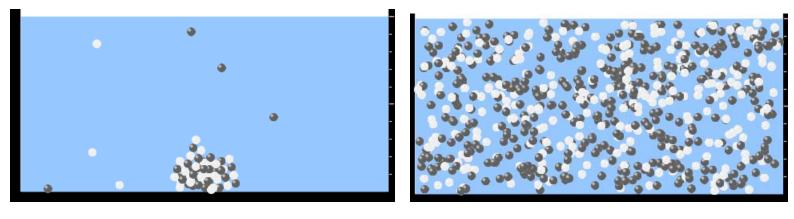





XY

XY

## 3. Which will have more dissolve particles in a saturated solution? $K_{sp}=2 E - 15$ A compound made from


A. X<sup>+2</sup> and Y<sup>-2</sup> B. X<sup>+2</sup> and Y<sup>-3</sup> C. no difference





## Answer to 3 $A.K_{sp} = x^2; x = 4E - 8$ $B.K_{sp} = (3x)^3 (2x)^2; x = 5E - 4$

If you run the sim at the default volume, you cannot get the second compound to ppt, but only 4 dissolve of the first.



 $X_3Y_2$ 

XY