The pendulum lab

Run the '**Pendulum lab' java simulation** with a 1 kg single pendulum and use it to investigate the relationship between the pendulum's period (*T*) and the independent variables 'length' (*l*) and angular amplitude/initial angle (θ).

The following tables may be of assistance.

Part A	Vary length	(keen	angle fixed at 30°)	
IallA	vary ichgui	(ACCD	angle fixed at 50)	

1	0	1 0	/			
length (<i>l</i>)						
Period (T)						

Part B Vary angle (keep length fixed at 1 m)

•	-					
angle (θ)						
Period (<i>T</i>)						

Pendulum Lab

Use a spreadsheet and a **Power fit** trendline to produce graphs of your results (plot *T* on the vertical axis). State a possible formula for each graph, using *T*, *l* and θ as symbols (not *x* and *y*). An example of a suitable Excel 2007 spreadsheet is shown below. Contact Geoff Phillips (gphillips@bigpond) to obtain a copy.

