The pendulum lab

Run the 'Pendulum lab' java simulation with a 1 kg single pendulum and use it to investigate the relationship between the pendulum's period (T) and the independent variables 'length' (l) and angular amplitude/initial angle (θ).

The following tables may be of assistance.
Part A Vary length (keep angle fixed at 30°)

length (I)										
Period (T)										

Part B Vary angle (keep length fixed at 1 m)

angle (θ)										
Period (T)										

Pendulum Lab

Use a spreadsheet and a Power fit trendline to produce graphs of your results (plot T on the vertical axis). State a possible formula for each graph, using T, l and θ as symbols (not x and y). An example of a suitable Excel 2007 spreadsheet is shown below. Contact Geoff Phillips (gphillips@bigpond) to obtain a copy.

