PhET Collision Lab: Introduction in One Dimension Homework assignment which may be done with a partner

Learning goals:

- Draw "before-and-after" pictures of collisions.
- Construct appropriate vector representations of "before-and-after" collisions.
- Explain what variables are conserved and under what conditions.
- What does "elasticity" mean?
- Identify vector and scalar quantities.

Directions:

1. Experiment with one-dimension elastic collisions (Check 1d and set elasticity at 100%). Make a table like this to help you organize your thoughts about collisions; use landscape layout so you can fit everything; "x" means there would not be a drawing in that box. Try varying mass and initial speed (including some initial zero velocity). I am expecting several trials. The *Restart* button is handy for replaying an experiment.

	Mass 1	Mass 2	Initial velocity 1	Initial velocity 2	Initial total velocity	Initial total momentum	Kinetic energy initial	Final velocity 1	Final velocit y 2	Final total velocity	Final total momentum	Kinetic energy final
Trial 1												
Pictures of balls with vector	X	X					Х					х
More trials												
Pictures of balls with vector	X	X					X					X

- 2. Think about the relationships you observed and then answer these questions:
 - a. What the difference between the quantities that have vector drawings and the ones that don't?
 - b. In your own words, what does "elastic collision" mean?
 - c. List quantities that have the same value (and direction if a vector) before and after the collision. If a quantity has the same value (and direction if a vector), it is said to be "conserved"
 - d. What quantities are not "conserved"?
 - e. Run one more experiment to check your answer to 2c and 2d. Describe your experiment and explain how it supports your answers.
- 3. Try some of the experiments again, <u>varying the elasticity</u>. Record your results in a similar data table, but add a column for "elasticity".
- 4. Describe:
 - a. Any changes you need to make to your definition of "elastic collision" from 2b.
 - b. Adaptations to your ideas about quantities that are conserved when the elasticity is varied.