Balancing Chemical Equations Discussion and Clicker questions by Trish Loeblein 6/12/2011

Learning Goals: Students will be able to:

- Describe what "reactants" and "products" in a chemical equation mean.
- Explain the importance of knowing the difference between "coefficients" and "subscripts".
- Use pictures and calculations to show how the number of atoms for each product or reactant is found.
- Identify the relationship between "reactants" and "products" atoms.
- Balance a chemical equation using the relationships identified.
- Given a chemical equation, draw molecular representations of the reaction and explain how the representations were derived.
- Given a molecular drawing of a chemical reaction, write the equation and explain how the symbols were derived.

1. What would you do to balance this reaction?

A. Double the coefficient of $\mathrm{N}_{2}\left(2 \mathrm{~N}_{2}\right)$
B. Multiply coefficient of H_{2} by $3\left(3 \mathrm{H}_{2}\right)$
C. Multiply subscripts of H_{2} by $3\left(\mathrm{H}_{6}\right)$
D. Double the subscripts for $\mathrm{NH}_{3}\left(\mathrm{~N}_{2} \mathrm{H}_{6}\right)$
E. Double the coefficient of $\mathrm{NH}_{3}\left(2 \mathrm{NH}_{3}\right)$
2. Which visual cues can you use on a test to see if your equation is balanced or not?

1. $\mathrm{N}_{2}+3 \mathrm{H}_{2}$

2. NH_{3}

3. Which chemicals are reactants?

$\mathrm{O} \mathrm{NH}_{3} \not+\mathrm{O} \mathrm{O}_{2} \Rightarrow \mathrm{O} \mathrm{N}_{2} \not+\mathrm{O} \mathrm{H}_{2} \mathrm{O}$

A. HN_{3} and O_{2}
B. O_{2} and $\mathrm{H}_{2} \mathrm{O}$
C. N_{2} and $\mathrm{H}_{2} \mathrm{O}$
D. $\mathbf{N H}_{3}$ and \mathbf{N}_{2}
4. Which best describes the products of a chemical equation?
$2 \mathrm{~F}_{2}$
$1 \mathrm{H}_{2} \mathrm{O}$
\rightarrow
$1 \mathrm{OF}_{2}$
2 HF

Before Reaction
After Reaction
A. Chemicals before the reaction starts
B. Chemicals after the reaction ends
C. Chemicals on the left of the arrow
D. Chemicals on the right of the arrow
5. Which are the products of this chemical equation?

$$
1 \mathrm{OF}_{2} \leftrightarrows 2 \mathrm{HF} \leadsto 2 \mathrm{~F}_{2} \longleftarrow 1 \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
& \text { A. } 1 \mathrm{OF}_{2}+2 \mathrm{HF} \\
& \text { B. } 2 \mathrm{~F}_{2}+1 \mathrm{H}_{2} \mathrm{O} \\
& \text { C. } \mathrm{F}_{2} \text { and } \mathrm{H}_{2} \mathrm{O} \\
& \text { D. } O F_{2} \text { and } \mathrm{HF} \\
& \text { E. More than } \mathbf{2} \text { answers }
\end{aligned}
$$

Which best describes the products of a chemical equation?

$2 \mathrm{~F}_{2} \leftrightarrows 1 \mathrm{H}_{2} \mathrm{O} \leadsto 1 \mathrm{OF}_{2} \stackrel{\leftarrow}{ } \mathrm{HF}$

An author of a test or text may chose to write this reaction:

$$
1 \mathrm{OF}_{2} \leftrightarrows 2 \mathrm{HF} \leadsto 2 \mathrm{~F}_{2} \leftrightarrows 1 \mathrm{H}_{2} \mathrm{O}
$$

Lesson learned: Don't try to memorize reactions, analyze each one that is given.

6. Is this reaction balanced?

A. Yes
B. No, there needs to be fewer red on the reactant side.
C. No, there needs to be more red on the product side.
D. No, for another reason.

