Wave Properties with <u>Waves on a String Simulation</u> Author: Jackie Esler Student quide:

Discuss the words in the box.

0

review we have already covered and new you will learn today

Name:

Review:	New: (check-off at the end)
crest	amplitude
trough	frequency
line of origin	oscillate vs. pulse

Guiding Question:

Pulse

How do the properties of amplitude and frequency affect wavelength?

- 1. Click on the first link
- 2. For this activity you will be **collecting data** to explore three properties of a wave.

3. Explore the simulation with your partner. Be sure to click on all the buttons.

- 4. For the first set of investigations, we will look at amplitude.
 - you need to be on <a>Pulse <a>Doce <a>End
 - The rest of your screen should be set up like this:

Look over the data table, on the back, and discuss how get the data you need. moves the wave.

Amplitude setting	Height of wave at the start (be sure your ruler is lined up correctly)	Distance ring moves on pole (end)
100		
50		
5		

Discuss what happened to the energy at the end of the wave when we changed the amplitude. Be prepared to share your thoughts on this with the class

- 6. For this next part we will investigate wavelength.
 - You need to be on Oscillate
 - The rest of your screen should be set up like we did for number 4.
 - Try out the step button after you hit pause. This may be useful for collecting data.

- > Discuss how they were similar and how they were different.
- > Be prepared to share your thoughts with the class.

Teacher Check- point Wave Properties with <u>Waves on a String Simulation</u> Author: Jackie Esler Student Guide

Name ___

Day 2: For the third set of investigations, we will look at frequency.

- you need to be on Oscillate
- open both the ruler and timer
- controlled variables: Amplitude and damping should be left on 50 and tension stays on "high"
- Remember, to stop or slow the wave use pause/play and
 - 1. Look over the data table and discuss how you will collect the data you need.
 - 2. Before you begin... try a little practice using the timer:
 - Turn the timer on, off and reset the timer while waves are moving.
 - 3. Practice counting waves passing a given point:
 - Move the vertical ruler so that it is along the wave's path.
 This will be the point where you watch waves pass and count
 them. Count 5 waves passing the ruler. Change the frequency and count again.

4. Fill in the table by working together counting the waves and using the timer.

frequency	Time	Number of waves:			Average number of waves counted	Number of waves in 1
Interval	Trial #1	Trial #2	Trial #3	n 10 second period	SECOND frequency**	
50	10 seconds					
10	10 seconds					
100	10 seconds					

*To find frequency, divide the average number of waves counted by the time interval.

Wave Properties with <u>Waves on a String Simulation</u> Author: Jackie Esler

- 5. Talk about the data.
 - > Decide on a way your group can explain wave **frequency** to the class.

Write your idea(s) on the lines.

Frame: Our data show that the higher the number chosen for the frequency on the slider, the ______ the number of waves passing ______ in a certain amount of ______.

6. Use arrows, or draw on the wave, to show what will happen when the **amplitude** is increased:

7. Use arrows, or draw on the wave, to show what will happen when the **frequency** is increased:

