Name: \_\_\_\_\_\_ Grade: \_\_\_\_\_\_

### **Sound Waves**

### Pre-lab

A wave is created on this string by moving the wrench up and down.



1. What would change if the wave had a higher frequency and smaller amplitude?

**Draw how the string would look** for a higher frequency, smaller amplitude wave over this picture of the wave:



What would change if the wave had a lower frequency and larger amplitude?
 Draw how the string would look for a lower frequency, larger amplitude wave over this picture of the wave:



3. If you were to **create this wave by moving the wrench up and down,** describe how you would **move the wrench differently** to make the high frequency, small amplitude wave compared to a low frequency, large amplitude wave?

Motion to make a high frequency, small amplitude?

Motion to make a low frequency, large amplitude?

4. A student is listening to some pure notes that are produced using an electronic piano:



a. Which picture or pictures (A, B, or C) would best show the student listening to a high-pitched sound?

Why do you think so?

b. Which picture or pictures would best show the student listening to a loud sound?

Why do you think so?

c. Which picture or pictures would best show the student listening to a low frequency sound?Why do you think so?

# Sound Waves (Teacher Notes)

#### **Class Demonstration**

After the pre-lab, and before starting activity, demo 2 tuning forks, or instruments – a high-pitch one and a low-pitch one.

Ask: Which one of these is a high-pitch? Which is a low pitch? Ask some more examples things that make a high-pitch sound and things that make a low-pitch sound.

The goal of this demo is only to make sure students to associate sounds with "high-pitch" and "low-pitch".

Students will then be discovering \*how\* to make high-pitched noises and low-pitched noises in terms of frequency/amplitude and in terms of vibrational motion of a speaker.

### Sound Waves

#### Learning Objectives:

- Explore and draw conclusions about the nature, properties and behaviors of sound waves.
- Use the simulation to develop your own definition of frequency and amplitude.
- Describe how frequency and amplitude affect the sounds we hear.
- Given a description of a sound like "high pitched and loud", describe the amplitude and frequency.
- Discuss examples of things that make the different types of sounds listed in the table below.
   Write your examples in the table below.
- Open Sound simulation from the icon on your computer.
   Use the Listen to a Single Source tab. Turn on the Audio Enabled so you can hear the sound.

#### Create the sounds in the table below!

|                               |                       | Explain how you used | Draw what the         |
|-------------------------------|-----------------------|----------------------|-----------------------|
|                               | Example of something  | the simulation to    | sound waves look like |
| Sound                         | that makes this sound | make the right noise | in the simulation     |
| Case A:<br>Loud, High-pitched |                       |                      |                       |
| Case B:<br>Soft, High-pitched |                       |                      |                       |
| Case C:<br>Loud, Low-pitched  |                       |                      |                       |
| Case D:<br>Soft, Low-pitched  |                       |                      |                       |

- **3.** Which cases in Question #2:
  - a. Have a high frequency?
  - b. Have a large amplitude?\_\_\_\_\_

Explain what controls pitch, and what controls loudness.

#### 4. Creating Sounds ...

|                                              | <ul> <li>Compare how you would have to move the speaker to produce the sound in each case.</li> <li>Describe the motions below.</li> </ul> | Is this sound<br>Low or high<br>pitch? |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Sound                                        | Be sure to describe what is different about each one.                                                                                      | Loud or soft?                          |
| Case E:<br>Low Frequency,<br>Low Amplitude   |                                                                                                                                            |                                        |
| Case F:<br>High Frequency,<br>Low Amplitude  |                                                                                                                                            |                                        |
| Case G:<br>Low Frequency,<br>High Amplitude  |                                                                                                                                            |                                        |
| Case H:<br>High Frequency,<br>High Amplitude |                                                                                                                                            |                                        |

- 5. **Develop rules** for what effects frequency and what effects amplitude to explain your observations from Question 4.
- **6.** Some of your friends are confusing frequency and amplitude. How would you describe these terms in **your own words or pictures** to help your friends understand each one?

## **Sound Waves**

#### Post-lab

A wave is created on this string by moving the wrench up and down.



What would change if the wave had a higher frequency and smaller amplitude?
 Draw how the string would look for a higher frequency, smaller amplitude wave over this picture of the wave:



What would change if the wave had a lower frequency and larger amplitude?
 Draw how the string would look for a lower frequency, larger amplitude wave over this picture of the wave:



3. If you were to **create this wave by moving the wrench up and down,** describe how you would **move the wrench differently** to make the high frequency, small amplitude wave compared to a low frequency, large amplitude wave?

Motion to make a high frequency, small amplitude? Motion to make a low frequency, large amplitude? 4. A student is listening to some pure notes that are produced using an electronic piano:



- a. Which picture or pictures (A, B, or C) would best show the student listening to a high-pitched sound? \_\_\_\_\_\_
   Why do you think so?
- b. Which picture or pictures would best show the student listening to a loud sound? Why do you think so?
- c. Which picture or pictures would best show the student listening to a low frequency sound? Why do you think so?
- 5. How *useful for your learning* was this science activity, compared to other science class activities? (circle)

|                                                                                                            | More useful    | About the same | Less useful    |  |  |
|------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|--|--|
| How <i>enjoyable</i> was this science class activity, compared to other science class activities? (circle) |                |                |                |  |  |
|                                                                                                            | More enjoyable | About the same | Less enjoyable |  |  |
| Why did you or did you not find it useful or enjoyable?                                                    |                |                |                |  |  |
|                                                                                                            |                |                |                |  |  |