Alpha Decay Questions

Trish Loeblein 6/14/2011

http://phet.colorado.edu/

Learning Goals: Students will be able to:

- Explain alpha decay process.
- Explain what half-life means in terms of single particles and larger samples.

Lesson Plans and Activity

1. If you read a test question that says: Hg-202 undergoes alpha decay to Pt-198. What does that tell you?

- A. A particle that has a mass of 4 is given off
- B. A particle that has a mass of 4 is absorbed

"emitted" is another way to say "given off"

Hg-202 undergoes alpha decay to Pt-198.

2. What else do you know?

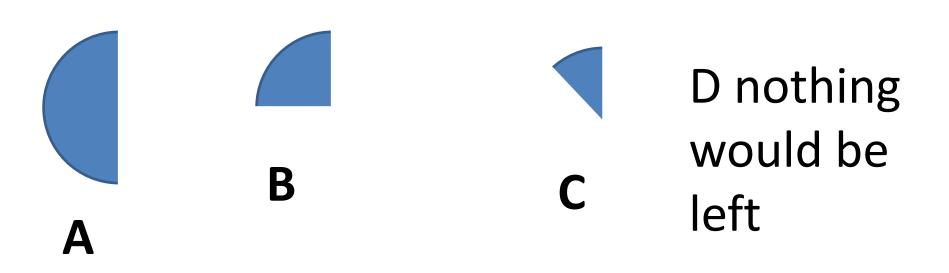
- A. The particle emitted also has no charge
- B. The particle emitted also has a charge of 2
- C. The particle emitted also has a charge of 4
- D. The particle emitted also has a charge of -2

Alpha particles are represented as $\frac{1}{2}\alpha$

Hg-202 undergoes alpha decay to Pt-198.

3. What would the reaction look like?

A.
$$\frac{202}{80}$$
 Hg $\longrightarrow \frac{202}{80}$ Pt $+\frac{4}{2}\alpha$


B. $\frac{202}{80}$ Hg $\longrightarrow \frac{198}{80}$ Pt $+\frac{4}{2}\alpha$

C. $\frac{202}{80}$ Hg $\longrightarrow \frac{198}{78}$ Pt $+\frac{4}{2}\alpha$

Remember mass and charge must be equal on both sides of reaction

- 4. If you know the half-life of a substance is 50 seconds and the initial amount can be represented as which can you know for certain?
 - A. After 50 seconds the representation would be
 - B. After 50 seconds the representation <u>could</u> be
 - C. If the sample size is small, it could be very different after 50 seconds.
 - D. A and C
 - E. B and C

5. If you know the half-life of a substance is 50 seconds and the initial amount can be represented as what would you predict the graph to look like after 150 seconds?

