

Annotated Lecture Slides for Saturated Solutions Lecture Demo

SIMULATIONS USED

Salts and Solubility, Concentration, Molarity

AUTHORS

Ted Clark (The Ohio State University)

Julia Chamberlain (University of Colorado Boulder)

COURSE

General Chemistry

COPYRIGHT: This work is licensed under a <u>Creative Commons Attribution 4.0 International</u> <u>License</u>.

Learning goals

- Compare and describe saturated and unsaturated solutions at the particle-level, and in terms of macroscopic observations.
- Explain how and whether changes in solute amount and changes in volume affect the concentration of unsaturated and saturated solutions.
- Relate the maximum concentration of saturated solutions (at a particular temperature) to the identity of the solute.

- **Solubility** is the amount of solute required to form a saturated solution.
- A solution with a concentration of dissolved solute that is less than the solubility is said to be **unsaturated.**
- A solution with a concentration of dissolved solute that has reached its "maximum" value is **saturated.**
- A solution is said to be **supersaturated** if more solute is dissolved than in a saturated solution. This is an unstable condition.

Copyrighted textbook image omitted

Description:

A supersaturated solution undergoing crystallization after addition of a seed crystal.

Salt		
Mer	cury(II) Bromide	\$
lons 🧃	Mercury(II)	Bromide
Dissolved	0	0
Bound	9	18

Salt		
Silv	er Bromide	\$
lons	Silver	Bromide
Dissolved	0	0
Bound	9	9

Salt		
Co	pper(l) lodide	*
lons	Copper(I)	Iodide
Dissolved	0	0
Bound	12	12

Salt					
Strontium Phosphate 🛟					
lons (Strontium	Phosphate			
Dissolved	0	0			
Bound	18	12			

Salt-			
	Thal	lium(I) Sulfide	\$
lo	ons (• Thallium	😑 Sulfide
Dissolv	/ed	0	0
Bou	ind	14	7

Salt			
	Silve	r Arsenate	\$
le	ons	Silver	🥚 Arsenate
Dissol	/ed	0	0
Βοι	ind	12	4

Sketch what happens when AgBr(s) is added to water.

Describe the salt

- a) Before it is added to water.
- b) When it is first added.
- c) When a lot is added.

Use the terms unsaturated, saturated, and supersaturated (as applicable) to in your description.

					-
					-
	9		•		
å			ə ə	• • • •	
	· * 3	• •			•

lons	Silver	Bromide
Dissolved	15	15
Bound	0	0
Total	15	15

Unsaturated or saturated?

	•	° 0 0 ,	2	• • •	• •	•		•	
•	••	•	. .			•	•	9	

lons	Silver	Bromide
Dissolved	23	23
Bound	8	8
Total	31	31

Unsaturated or saturated?

Will Ag⁺ ions combine with Br⁻ ions in this saturated solution?

- A. Yes, some AgBr(s) will form.
- B. Yes, more and more AgBr(s) will form until all the ions are used up.
- C. No, AgBr(s) will not form since the solution is saturated.

Use the terms unsaturated, saturated, and supersaturated (as applicable) to describe solutions I, II, and III.

Which solution has the highest concentration?

<u>The Concentration of</u> <u>Unsaturated vs. Saturated</u> <u>Solutions</u>

<u>The Concentration of</u> <u>Unsaturated vs. Saturated</u> <u>Solutions</u>

Type of solution Unsaturated Saturated

Exp. 1 Volume = constant Solute increased

Increases Constant

Exp. 2 Solute = constant Open bottom faucet constant Open top faucet decreases Wait & let it evaporate increases

Initially a 1.00 M solution 0.50 mol solute 0.50 L solution

