

Annotated Lecture Slides for Sugar and Salt Solutions

LECTURE DEMO TITLE

Electrolyte and Non-electrolyte Solutions

AUTHORS

Robert Parson (University of Colorado Boulder)

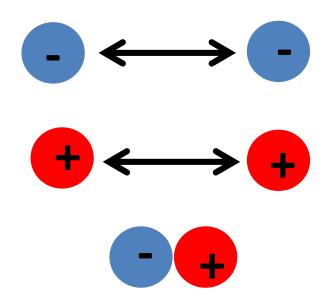
Trish Loeblein (University of Colorado Boulder)

COURSE

Introductory / Preparatory College Chemistry

COPYRIGHT: This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Learning goals

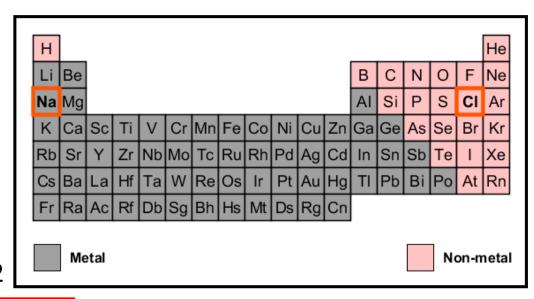

 Explain the difference between electrolytes and nonelectrolytes in terms of conductivity, the nature of the compound, and dissociation.

 Describe and visualize what happens at the atomic or molecular scale when an electrolyte or a nonelectrolyte dissolves in water

Ionic Compounds

- Form from the *electrostatic* interaction between cations and anions.
- Electrostatic forces: attraction/repulsion between charged particles.

 Ionic compounds form between metals and nonmetals.


Which compound is ionic?

- A. CO
- B. MgF₂
- C. Al_2O_3
- D. Both CO and MgF₂
- E. Both MgF₂ and Al₂O₃

Which compound is ionic?

- A. CO
- B. MgF₂
- C. Al_2O_3
- D. Both CO and MgF₂

E. Both MgF₂ and Al₂O₃

A metal combined with a non-metal make an "ionic compound".

(Next 3 slides)

BENCHTOP DEMONSTRATION

Beaker Contents	Conductivity Observations
Unknown 1	
Unknown 2	
Water	

Beaker Contents	Conductivity Observations
Unknown 1	No conductivity
Unknown 2	High conductivity
Water	Distilled (pure) water: No conductivity Tap water: Some conductivity

Which solution is which?

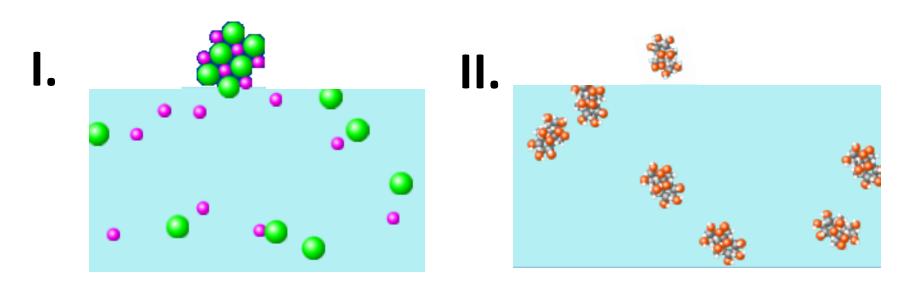
- A. 1 is sugar and 2 is salt
- B. 2 is sugar and 1 is salt
- C. Both are sugar
- D. Both are salt

Electrolytes and Nonelectrolytes

Electrolytes

- conduct electricity
- substances that release ions when dissolved in water
 - This process is also called dissociation or ionization

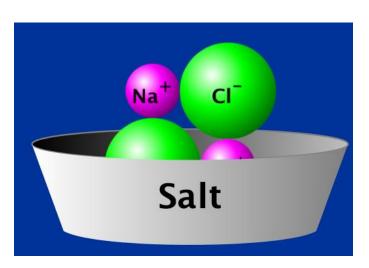
Nonelectrolytes


- substances that do NOT dissociate in water
- do NOT conduct electricity

Ionic compounds (if they dissolve in water) are always electrolytes.

Most molecular compounds are nonelectrolytes.

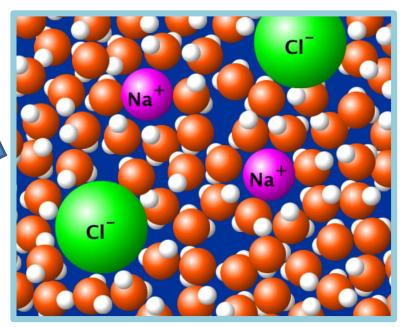
If the atom-scale view of a compound in water looks like the picture on the right (II.), you might categorize the compound as...


a. Ionic

b. Molecular

c. Neither

Ionic Compound Example



 $NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$

Key features of ionic solid:

- Repeated units in larger lattice
- Units are made of charged ions

