PhET Wave on a String

Student Exploration Guide

Name

Learning Goals:

- I will be able to measure wavelength on a transverse wave.
- I will be able to explain how amplitude is not related to frequency or wavelength.
- I will be able to explain how frequency and wavelength are inversely related.

<u>Set Up</u>

Click on the Wave On A String Link. (HTML5)

- 1. Set the top controls to $\ensuremath{\textbf{Pulse}}$ and $\ensuremath{\textbf{Fixed}}\ensuremath{\,\textbf{End}}.$
- 2. On the bottom menu:
 - Move the **Damping** slider to None
 - Keep the **Tension** at High
 - Check mark **Rulers**, and move the rulers to look like the image below.

The green button will send a single pulse:

KEY

Date

First Activity: Amplitude

Set your controls to

- Select Slow Motion Slow Motion
- Set amplitude at 0.50 cm and frequency at 1.00 Hz.
- Use the pause button to stop the wave for easier measurement.
- 6. Move the horizontal ruler to measure the wavelength. Remember: Crest to Crest or Trough to Trough. Such as in the image below.

cm

```
Each tiny mark on the ruler equates to 0.2 cm
```


- 7. Double the amplitude so it is now at 1.00 cm, but keep the frequency at 1.00 Hz.
- 8. Restart the wave. Play the oscillation, then pause it.
- 9. Move the horizontal ruler to measure the wavelength. Wavelength #2 = $\frac{6.2}{cm}$ cm
- 10. How does the wavelength #1 compare to wavelength #2? SAME

NO 11. Did changing the amplitude affect the wavelength?_

Third Activity: Wavelength and Frequency

• Set your controls to Oscillate

nd 💽 No End

- Slow Motion
- Keep amplitude at 1.00 cm and change the frequency to 1.50 Hz.
- Use the pause button to stop the wave for easier measurement.
- 12. Move the horizontal ruler to measure the wavelength. Wavelength #3 = 4.1 cm
- 13. Set the frequency so it is now at 2.00 Hz, but keep the amplitude at 1.00 cm.
- 14. Restart the wave. Play the oscillation, then pause it.
- 15. Move the horizontal ruler to measure the wavelength. Wavelength #4 = $\frac{3.1}{cm}$ cm
- 16. Set the frequency so it is now at 3.00 Hz. Keep the amplitude at 1.00 cm.
- 17. Restart the wave. Play the oscillation, then pause it.
- 18. Move the horizontal ruler to measure the wavelength. Wavelength #5 = $\frac{2.0}{cm}$ cm

19. Summarize your data in the chart below.

Data #	FREQUENCY (Hz)	WAVELENGTH (cm)
#1	1.00 Hz	6.2
#2	1.00 Hz	6.2
#3	1.50 Hz	4.1
#4	2.00 Hz	3.1
#5	3.00 Hz	2.0

- 20. Why did the summary chart not include any information about the amplitude? Amplitude does not affect the wavelength or the frequency.
- 21. Did changing the frequency affect the wavelength? <u>YES</u>
- 22. As the frequency increased, what happened to the wavelength?_____ The wavelength decreased.
- 23. What happens to the wavelength of a wave if the frequency is doubled? The wavelength is 1/2 the original.
- 24. What happens to the wavelength of a wave if the frequency is tripled? The wavelength is 1/3 the original.