Name:	 	
Period:		

(Part 1) Verifying Interference Concepts

Load 'Sound' simulation at https://phet.colorado.edu/en/simulation/sound

Use the 'Measure' tab

1) Create a situation where you can measure waves that measure 0.5m long a) What setting(s) did you use?

Use the 'Two Source Interference' tab

- 1) Describe clearly where you place the person so he hears:
 - a) constructive interference
 - b) destructive interference
 - c) Write an equation for case b) and provide a very simple (no sine waves necessary) sketch to support your equation.

(Part 2) Transverse Standing Waves

Load 'Wave on a String' simulation at https://phet.colorado.edu/en/simulation/wave-on-a-string

- 1) What boundary condition(s) cause the reflected wave to flip over?
- 2) What does increasing the Tension do to the wave speed as it travels across?
 - a) What does increasing the Tension do to λ ? and what equation made this predictable?
- 3) Does the **Amplitude** affect the λ , or wave speed?
- 4) Create standing wave situations (so bumps appear to not drift over time) (Use ruler(s) and/or timer/play/pause/step to help you figure this out.)

Remember:
$$f = n \frac{v}{2L}$$
, $n = 1, 2, 3, ...$

a) for n=4	b) for n=6
v =	v =
L =	L =
f =	f =
$\lambda =$	$\lambda =$
n = 4	n = 6

Attach a screen shot of an n=4 case to this sheet. (There are many solutions!)