Introduction:

When we bake/cook something, we use a specific amount of each ingredient. Imagine if you made a batch of cookies and used way too many eggs, or not enough sugar. YUCK! In chemistry, reactions proceed with very specific recipes. The study of these recipes is stoichiometry. When the reactants are present in the correct amounts, the reaction makes products. We are going to look at what happens when there are more or less of some of the reactants present.

Procedure: PhET Simulations \rightarrow Play with the Sims \rightarrow Chemistry \rightarrow Reactants, Products, and Leftovers OPEN IN HTML 5
 (http://phet.colorado.edu/sims/html/reactants-products-and-leftovers/latest/reactants-products-and-leftovers_en.html)

Part 1: Making Sandwiches:

1. A cheese sandwich requires 2 slices of bread to 1 slice of cheese. If there is exactly twice as many slices of bread as cheese, then there will be no leftovers. What happens if you have two slices of bread and two slices of cheese? You have a slice of cheese left over!
2. Use the simulation to play around with this two-reactant synthesis reaction. Take some time and familiarize yourself with the simulation buttons
3. At the bottom of the screen, change the coefficients of the reactants to $2: 1$.

4. Notice that there is now one sandwich with no leftovers!
5. Complete situations B through D. A has been done for you as an example.

Situation	Bread Used	Cheese Used	Sandwiches Made	Excess Bread	Excess Cheese
A	4 slices	5 slices	2 sandwiches	0 bread	3 cheese
B	2 slices	3 slices			
C			2 sandwiches	1 slice	0 slices
D	6 slices		3 sandwiches		4 slices

6. Look at situation A. The cheese in this case is said to be in excess. The other reactant (bread) has no leftovers. The bread in this case is the limiting reactant.
7. In situations B, C, and D, determine the limiting reactant: B : \qquad C: \qquad D: \qquad

Part 2: Real Chemical Reactions:

8. Select "Molecules" towards the bottom of your screen. We can now work with real chemical reaction, one that creates a very entertaining BOOM!
9. What is the lowest molecule ratio for the reaction of hydrogen and oxygen to produce water? That is, balance the following equation:

$$
\ldots \mathrm{H}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{H}_{2} \mathrm{O}
$$

10. Complete the table below while making water $\mathrm{H}_{2} \mathrm{O}$ from hydrogen H_{2} and oxygen O_{2} :

Hydrogen Molecules $\mathbf{H}_{\mathbf{2}}$	Oxygen Molecules $\mathbf{O}_{\mathbf{2}}$	Water Molecules $\mathbf{H}_{\mathbf{2}} \mathbf{O}$	Excess $\mathbf{H}_{\mathbf{2}}$	Excess $\mathbf{O}_{\mathbf{2}}$
4 molecules	4 molecules			
7 molecules	6 molecules			
		4 molecules	0 molecules	0 molecules
6 molecules	8 molecules			
	4 molecules	1 molecules	0 molecules	

Stop for check point: Teacher signature for this page:
11. Towards the top, select
12. Complete the table below:

Molecules $\mathbf{N}_{\mathbf{2}}$	Molecules $\mathbf{H}_{\mathbf{2}}$	Molecules $\mathbf{N H}_{\mathbf{3}}$	Excess $\mathbf{N}_{\mathbf{2}}$	Excess $\mathbf{H}_{\mathbf{2}}$
3 molecules	6 molecules			
6 molecules	3 molecules			
6 molecules	4 molecules	4 molecules	2 molecules	0 molecules

13. Towards the top, select

Combust Methane which will produce two products, water and carbon dioxide CO_{2}.
14. Balance the equation for the combustion of methane: $\quad{ }_{-} \mathrm{CH}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
15. Complete the table below:

molecules $\mathbf{C H}_{\mathbf{4}}$	molecules $\mathbf{O}_{\mathbf{2}}$	molecules $\mathbf{C O}_{\mathbf{2}}$	molecules $\mathbf{H}_{\mathbf{2}} \mathbf{O}$	Excess molecules $\mathbf{C H}_{\mathbf{4}}$	Excess molecules $\mathbf{O}_{\mathbf{2}}$
4 molecules	4 molecules				
3 molecules	6 molecules				
		2 molecules	4 molecules		
		3 molecules			

Stop for check point: Teacher signature for this page: \qquad

Part 3: The BEST PART:

16. Go to the game section. To do this click on a button called "Game" that has a smiley face, which is at the bottom of the screen.
17. There are three levels. Each level has 5 challenges. When you think you
 have the number of molecules necessary, click the "Check" button. You will be awarded points if you get the equation correct. You only get two attempts.
18. Complete all 5 attempts. When you get to the final screen (see image to the right), write down your score and show your teacher your score before moving on... else you get to do it again!

19. Once you have completed Level 1, you will continue to Level 2. Then you will try Level 3.

