Refraction \& Snell's Law

In this activity students will be exploring the speed and intensity of light in a variety of media using the "Bending Light" PhET simulation.

Open the simulation by clicking on the link:
https://phet.colorado.edu/en/simulation/bending-light
Take a look at the explanatory video via YouTube:
https://youtu.be/v_Y4O73XdQc

Learning Objectives

By the end of these activities it is hoped that students will have an acquired the following skills:

- Following explicit instructions to gain acquired knowledge.
- Measuring the angles of incidence and refraction.
- Processing data in the production of a straight line graph.
- Using straight line gradient to determine refractive index and Snell's law equation.
- Comparison of known data and experimental data.

Activity: Speed of light as it passes through a denser medium.

- Make sure you have pressed the "Intro" button on the bottom of the page so the screen looks like the image opposite.
- Note the "Normal" is the hatched vertical line at 90° to the boundary. Make sure you have AIR at the top and WATER below it.
- Drag and drop protractor onto the "Normal".
- Place the light source so the incident ray is running down the 10° angle, ϑ_{i}. Note: TO the Normal.

- Measure the angle of refraction, ϑ_{r}, for the ray in the water again TO the Normal. Place this value in Table 1.
- Continue moving the light so it shines down incident angles of $20^{\circ} ; \mathbf{3 0} ; \mathbf{4 0}$; $50^{\circ} ; \mathbf{6 0} ; \mathbf{7 0}{ }^{\circ} ; \mathbf{8 0}{ }^{\circ}$ and measure the corresponding refractive angle then add these values to Table 1.

Table 1:

ϑ_{i}	10°	20°	30°	40°	50°	60°	$\mathbf{7 0}$	80°
ϑ_{r}								

Processing the data

- Convert the data into sine value and add the values to Table 2.

Table 2:

$\boldsymbol{\operatorname { s i n }} \vartheta_{i}$

$\sin \vartheta_{r}$

- Now plot the data from table 2 on the graph provided with
$y=\sin \vartheta_{i}$ and $x=\sin \vartheta_{r}$

- On plotting the data draw a line of best fit.
- Determine the gradient of your line.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- What does the gradient of a $\sin \vartheta_{\mathrm{i}}$ vs $\boldsymbol{\operatorname { s i n }} \vartheta_{\mathrm{r}}$ represent?
- The equation of a straight line is described mathematically as $\mathbf{y}=\mathbf{m x}+\mathbf{c}$. Use this generic formula to find the mathematical formula of your graphs line.
- The refractive index for water is stated as being 1.33. Compare this to the value you obtained, what do you notice?
- Is there any difference between the values you stated above?

If so come up with possible reasons as to how this could have occurred.

- Glass has a refractive index of 1.5 how would you expect this line to look when compared to that formed by the water data?

SUMMARY:

- How can you determine the refractive index of a media from a set of incident and refractive angle?
- What law does the equation of a $\sin \vartheta_{\mathrm{i}}$ vs $\sin \vartheta_{\mathrm{r}}$ represent?

