Refraction & Snell's Law

In this activity students will be exploring the speed and intensity of light in a variety of media using the "Bending Light" PhET simulation.

Open the simulation by clicking on the link:

https://phet.colorado.edu/en/simulation/bending-light

Take a look at the explanatory video via YouTube: https://youtu.be/v_Y4O73XdQc

Learning Objectives

By the end of these activities it is hoped that students will have an acquired the following skills:

- Following explicit instructions to gain acquired knowledge.
- Measuring the angles of incidence and refraction.
- Processing data in the production of a straight line graph.
- Using straight line gradient to determine refractive index and Snell's law equation.
- Comparison of known data and experimental data.

Activity: Speed of light as it passes through a denser medium.

- Make sure you have pressed the "Intro" button on the bottom of the page so the screen looks like the image opposite.
- Note the "Normal" is the hatched vertical line at 90° to the boundary. Make sure you have AIR at the top and WATER below it.
- Drag and drop protractor onto the "Normal".
- Place the light source so the incident ray is running down the 10° angle, θ_i. Note: TO the Normal.

- Measure the angle of refraction, ϑ_r , for the ray in the water again **TO** the **Normal**. Place this value in Table 1.
- Continue moving the light so it shines down incident angles of 20°; 30°; 40°; 50°; 60°; 70°; 80° and measure the corresponding refractive angle then add these values to Table 1.

Table 1:

$artheta_{i}$	10º	20 °	30 °	40 °	50 °	60 °	70 °	80°
ϑ_{r}								

Processing the data

- Convert the data into sine value and add the values to Table 2.

Table 2:

$sinartheta_{i}$				
$sin \vartheta_r$				

- Now plot the data from table 2 on the graph provided with

 $y = sin \vartheta_i$ and $x = sin \vartheta_r$

- On plotting the data draw a line of best fit.
- Determine the gradient of your line.

- What does the gradient of a $Sin \vartheta_i$ vs $Sin \vartheta_r$ represent?

- The equation of a straight line is described mathematically as y = mx + c.
 Use this generic formula to find the mathematical formula of your graphs line.
- The refractive index for water is stated as being 1.33. Compare this to the value you obtained, what do you notice?

- Is there any difference between the values you stated above?

If so come up with possible reasons as to how this could have occurred.

- Glass has a refractive index of 1.5 how would you expect this line to look when compared to that formed by the water data?

SUMMARY:

- How can you determine the refractive index of a media from a set of incident and refractive angle?

- What law does the equation of a $\mbox{sin} \vartheta_i$ vs $\mbox{sin} \vartheta_r$ represent?