In this activity students will be deducing Newton's Law of Gravitation equation using simulation data with the "Gravity Force Lab" PhET simulation.

Open the simulation by clicking on the link:
https://phet.colorado.edu/sims/html/gravity-force-lab/latest/gravity-force-lab en.html Take a look at the explanatory video via YouTube:
https://youtu.be/C8ovRVtYfKU

Learning Objectives

By the end of these activities it is hoped that students will have an acquired the following skills:

- Following explicit instructions to gain acquired knowledge
- Investigate how how the various variables affect the gravitational force.
- Converting data into graphs to determine relationships.
- Finding the gravitational constant.
- Determining the overall Gravitational Law equation.

Deducing the formula

1. What is the relationship between gravitational force and mass.

- Increase one mass (blue circle) incrementally while keeping the other mass constant (red mass) and find the force by turning on the values (green circle).
- Complete the table below using this animation.

- Convert this data onto a graph. Screen shot this and place it in the space provided above.
- What is the relationship between the two masses and force? ANS:

2. What is the relationship between force and distance?

- Keep both masses the same
- Pull apart the masses so the ruler measures 10 m from centre of the red to the centre of the blue (green arrow, circle).

Remember the ruler moves

- Measure the force for each distance as you
 bring a mass 1 m closer.
- Complete the table below with the data for force at each distance.

Distance (m)	Force (N)
10	
9	
8	
7	
6	
5	
4	
3	
2	
1	

- Convert this data onto a graph. Screen shot this and place it in the space provided above.
- What is the relationship between distance and force? ANS:

3. Determining the constant and equation.

- Combine the relationships between force and the two masses and distance.
- Write the combined relationship between these variables? ANS:
- Now choose a value for the two masses; distance and find the force. Use these values to determine the gravitational constant. Place this value in the table below.

Test	Gravitational Constant, G
1	
2	
3	
Average	

- Do this three times and calculate the average gravitational constant.
- The actual value for Newton's Gravitational Constant is

$$
6.67408 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}
$$

- How does your average Constant compare with the accepted value, discuss? ANS:
- Write your overall formula for Newton's Gravitational Law? ANS:

