In this activity students will be exploring motion graphs with the "Moving Man" PhET simulation.

Open the simulation by clicking on the link:
https://phet.colorado.edu/en/simulation/legacy/moving-man
Take a look at the explanatory video via YouTube:
https://youtu.be/Hlua6ybbpVM

Learning Objectives

By the end of these activities it is hoped that students will have an acquired the following skills:

- Following explicit instructions to gain acquired knowledge
- Explore how changing various variables affect the graphs of distance; displacement; velocity and acceleration.
- Using gradient calculations to determine velocity and acceleration.
- Using area to calculate distance from a a velocity v time graph.

1. Comparing displacement and constant velocity.

- Click on the CHARTS tab at the top of the screen, green circle.
- Move the man by dragging him to the far LEFT. You will notice that the blue arrow, blue circle, moves down.

- In the velocity box, red circle, type 2.
- Press PLAY, yellow circle, and allow the programme to run until the man gets to the end of the track and then STOP the animation.
- Take a screenshot of the graphs and place it in the space below.

- What is the total distance travelled?
- If 0 m is home what is the man's displacement?
-What can be said about the man's velocity and how do you know?
- How does this compare to the blue distance vs time line?
- If the velocity is constant what do you notice about the acceleration line, green line?
- Use the blue distance v time line and calculate the gradient by dividing the RISE \div RUN. (Note: the time of the journey is shown in the top blue area)
- What does this number relate to?
- Produce a generic equation from the graph that combine velocity distance and time.

- CLEAR and RESET ALL

- Now do exactly the same thing but move the man to the other end, the RIGHT side.
- Place -2 in the velocity box.
- Press PLAY.
- Screen shot the screen

-What do you notice about these graphs compared to the first set?
- Use the blue distance v time line and calculate the gradient by dividing the RISE \div RUN. (Note: the time of the journey is shown in the top blue area as the line is going down the distance must be negative)
-What then do you think the negative on -2 tells us?

2. What is the relationship when acceleration is not 0 ?

- Move the man to the LEFT by pulling the blue arrow to the bottom, blue circle.
- In the box of acceleration, green circle, type in 1 for $1 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
- Press PLAY and STOP before the mane hits the wall.

- Take a screenshot and place in the area below.

Screenshot of the graph

- What is the total distance travelled?
- Compare and contrast the three curves.
\qquad
\qquad
\qquad
- Use the red velocity v time line and calculate the gradient by dividing the RISE \div RUN. (Note: the time of the journey is shown in the top blue area as the line is going down the distance must be negative)

This is virtually the same as the acceleration.

- Calculate the area under the velocity v time graph
- What does the area under the velocity v time graph represent?

- CLEAR and RESET ALL

- Now do exactly the same thing but move the man to the other end, the RIGHT side.
- Place -2 in the acceleration box.
- Press PLAY.
- Screen shot the screen and place in the space provided.

-What do you notice about these graphs compared to the first set?
- Pull the red arrow to the base of the velocity line to determine the maximum velocity reached. Use the time then to determine the distance by calculating the area.

SUMMARY

- Complete the table below to summarise what you have found.

SUMMARY		GRAPH	
	Dist v Time	Vel v Time	Acc v Time
Constant Velocity			
Constant Acceleration			
Area under the curve			

- If the value of either the displacement, velocity or acceleration is negative what does this mean?

