Molecule Design Challenge

Challenge

How do you keep electron clouds that repel each other still attached to an atom? How are electrons used to predict the shape of the molecule? How does electronegativity affect the shape of the molecule?

Requirements (what you must do)

1. The molecule chosen must be one of the following:

	Central Atom	Unshared Pairs of Electrons On Central Atom	Bond Angle	<u>Atom Color</u> Carbon - black
CO ₂	С	0	180°	Hydrogen - white
CH ₄	С	0	109.5°	Oxygen - red
H ₂ S	S	2	109.5°	Sulfur - yellow
NH_3	Ν	1	107°	Beryllium - green
SO ₂	S	1	120°	
BeH ₂	Ве	0	180°	
H ₂ O	0	2	104.5°	

- 2. Your model needs to depict the molecule accurately, using the correct bond angles, unshared pairs of electrons, and atom color.
- 3. Atomic Radii must be proportional.
- 4. Molecule name must be clearly visible.
- 5. Bond angles must be clearly labeled.
- 6. The model should be creative and original.

Restraints (what you can't do)

- 1. The model can be no larger than $1 \text{ m } \times 1 \text{ m}$ and no smaller than $15 \text{ cm } \times 15 \text{ cm}$.
- 2. The model needs to stand on its own.
- 3. Your group must bring their own materials.

Team members and Roles

Team Member	Role	Materials Responsible for		
	Visionary (Big Picture)			
	Equalizer			
	Skeptic			

Planning Phase

Individually make a bulleted list to identify all of the molecule facts. When looking at your molecule keep in mind the problem you need to solve.

Brainstorming Phase

Using GoogleDraw individually draw your design, and be sure to indicate the description and materials you plan to use with approximate cost.

As a team you will choose the best product design and your process design. Be sure each member of your team knows what they are responsible to bring for the construction phase.

Before you begin Construction Phase get teacher approval: _____

Design/Construction Phase

Build your design. During construction you may decide you need additional materials or that your design needs to change. This is ok – just make a new sketch and revise your materials list.

Testing Phase

Each team will test their design and process. If your design and process were unsuccessful, redesign and test again. Continue until you are happy with your solution. Be sure to watch the tests of the other teams and observe how their different designs worked.

Use GoogleDraw to draw your Final PRODUCT (make sure to label your sketch including total cost)

Evaluation Phase #1

Evaluate your teams' results and present your findings to the class. *As you answer each question, be sure to cite aspects of your model that support this answer.*

1. How do you keep electron clouds that repel each other still stay attached to an atom?

2. How are electrons used to predict the shape of the molecule?

3. How does electronegativity affect the shape of the molecule?

How s	ure we	re yo	u of you	ur answei	rs? (cir	cle one)			
Basically Guessed			Sure	•			Very Sure		
1	2	3	4	5	6	7	8	9	10
						Tead	cher Stamp	0	
Rede	sign/C	onst	ructior	Phase :	# 1	· · · · · · · · · · · · · · · · · · ·		Change 1	

Redesign your molecule using the PhET simulation *Molecule Shapes 1.1.11* (<u>https://phet.colorado.edu/sims/html/molecule-shapes/latest/molecule-shapes_en.html</u>).

During construction, you may decide that your original design needs to be changed based on what you observe in the simulation. That is ok- just make a new sketch, make changes to your original design, and revise your materials list.

Evaluation Phase #2

Evaluate your teams' results and present your findings to the class. As you answer each question, be sure to cite aspects of your model that support this answer.

1. How do you keep electron clouds that repel each other still stay attached to an atom?

2. How are electrons used to predict the shape of the molecule?

3. How does electronegativity affect the shape of the molecule?

How s	ure we	re yo	u of yo	our answer	s? (cir	cle one)					
Basica	lly Gue	essed		Sure				V	ery Sure		
1	2	3	4	5	6	7	8	9	10		
					Teacher Stamp						

ReDesign/Construction Phase #2

Redesign your molecule using the provided ball and stick model of your molecule. During construction you may decide that your original design needs to be changed based on the redesign ball and stick model. This is ok – just make a new sketch, make changes to your original design, and revise your materials list.

Evaluation Phase #3

Evaluate your teams' results and present your findings to the class. As you answer each question, be sure to cite aspects of your model that support this answer.

1. How do you keep electron clouds that repel each other still stay attached to an atom?

2. How are electrons used to predict the shape of the molecule?

3. How does electronegativity affect the shape of the molecule?

4. Why should I choose your molecule design?

How sure	were	e you	of your	answers	? (circle	one)			
Basically	Gues	sed		Sure				Ver	y Sure
1	2	3	4	5	6	7	8	9	10

Teacher Stamp _____

Share the Solution

Each team will CREATE a Google Slide presentation. The presentation should display the STEPS (phases) of your DESIGN process (be as detailed as possible). You will be graded on your portion.

Each team will make a video on FlipGrid outlining the engineering design process of their molecule.