Google

PhET Molecule Shapes html5

All Images Videos News More v Search tools

CLICK!

About 3,710 results (0.50 seconds)

Molecule Shapes - Molecules, VSEPR, Bonds - PhET https://phet.colorado.edu/.../molecule-sha... マ University of Colorado Boulder v Explore molecule shapes by building molecules in 3D! How does molecule shape change with different numbers of bonds and electron pairs? Find out by

Set-up: Choose "Model"
Check the two "Name" tools and the "Show Bond Angles" box.

Play with the sim adding bonds and lone pairs.
Part 1 Directions: Draw pictures of 4 different molecules you create using bonds and lone pairs. Record geometries and angles, below.

Picture 1	Picture 2	Picture 3	Picture 4
Molecule geometry	Molecule geometry	Molecule geometry	Molecule geometry
Electron geometry	Electron geometry	Electron geometry	Electron geometry
Bond angles	Bond angles	Bond angles	Bond angles

Part 1 Questions:

1. How many bonds can you add total?
2. How many lone pairs can you add total?
3. How many bonds and lone pairs can you add total?
4. How can you make the molecule geometry be DIFFERENT than the Molecule geometry?
5. Molecules have shape! Drag and rotate them around.

Part 2 Directions: Turn molecules around with mouse. Describe each molecule in the table, below				NH_{3}
				CH_{4}
				SF_{4}
			XeF_{4}	
				BrF_{5}
				SF_{6}

Name \qquad
\qquad
\qquad

Molecule Shapes

Part 2 Questions:

1. Can you change the shape of the molecules by twisting them around?

Yor \mathbf{N}

2. What happens to the molecules you dragged and twisted?
3. Are the bond angles in part 1 the same as the bond angles in part 2 ? Why do you think that they are the same/different?

Going Further:

4. Why do you think you cannot get more than 6 things around the central atom?
5. Organic molecules (like CH_{4}) have carbon as the central atom. How many bonds can a carbon central atom support?
6. Is CH_{4} planar (2D)?
7. DNA is a large organic molecule that has a shape described as a "double helix" shown in a cartoon, right. Given what you know about the carbon molecule's geometry (Q6) does this shape make sense? Why or why not?

Name \qquad
Period \qquad \square University of Colorado
Boulder

