

5. Molecules have shape! Drag and rotate them around.

, ,

Which molecule geometries are 1D or 2D?	Which molecule geometries are 3D? (give at
(give at least 3!)	least 3!)

 SF_6

Part 2 Questions:

1. Can you change the shape of the molecules by twisting them around?

d?

Y or N

- 2. What happens to the molecules you dragged and twisted?
- 3. Are the bond angles in part 1 the same as the bond angles in part 2? Why do you think that they are the same/different?

Going Further:

- 4. Why do you think you cannot get more than 6 things around the central atom?
- 5. Organic molecules (like CH₄) have carbon as the central atom. How many bonds can a carbon central atom support?
- 6. Is CH₄ planar (2D)?
- 7. DNA is a large organic molecule that has a shape described as a "double helix" shown in a cartoon, right. Given what you know about the carbon molecule's geometry (Q6) does this shape make sense? Why or why not?

https://phet.colorado.edu/sims/html/molecule-shapes/latest/molecule-shapes eh.html

http://www.clipartbest

Name	
Period	
Date	

AA31 Labs

AA31 Labs