## Energy Skate Park <br> APP1 Lab \#1



## Before you begin the lab:

$\checkmark$ Open the Energy Skate Park PhET simulation on your device. (Link is on Edmodo)
$\checkmark$ Make sure you have LoggerPro 3.0 on downloaded onto your computer. (It's free because you are my student. Link is on Edmodo.)
$\checkmark$ Grab a timer.

## Purpose

You are investigating the relationship between kinetic energy, potential energy, and total energy when only conservative forces are present and then again when non-conservative forces are present. The data will be analyzed graphically in order to provide a clear trend.

## Directions

## Part 1-Conservative Forces

1. Open Energy Skate Park. Choose Intro.
2. Take time to play around with the simulation. Make sure all boxes are checked.

* What do you notice about the total energy, kinetic energy, and potential energy in the bar graph?
* What do you notice about the pie graph? What must you do in order to get the pie graph to be larger?

3. You are measuring the changes in energy- total, kinetic, and potential over time. To do this, we need to define our system. This is a skater-earth system.
4. We also need to establish numbers for mass and speed.

5. Place the $10-\mathrm{kg}$ skater at $6-\mathrm{m}$ and start the timer when you hit play. Pause both timer and sim when the skater is at $4-\mathrm{m}, 2-\mathrm{m}, 0-\mathrm{m}$, and $6-\mathrm{m}$. Record the height, speed, and time in the table below. Continue recording until you've reached 45-s.

| Time | Height | Velocity |
| :---: | :---: | :---: |
| 0-s | $6-\mathrm{m}$ | $0-\mathrm{m} / \mathrm{s}$ |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

6. Calculate the potential energy, kinetic energy, and total energy of the system using the data from \#4.

| Time <br> (x-axis) | Potential Energy <br> (y-axis) | Kinetic Energy <br> (y-axis) | Total Energy <br> (y-axis) |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

7. Graph the three data sets in $\# 5$ using Logger Pro. I have attached an instructional video to the assignment to help with this step.
8. Click "Friction" at the bottom of the simulation.
9. Take time to play around with this simulation. Make sure all boxes are checked.

* What do you notice about the total energy, kinetic energy, and potential energy in the bar graph?
* What do you notice about the final thermal energy \& the total energy once the skater has stopped?

10. You are measuring the changes in energy- total, kinetic, and potential over time. To do this, we need to establish numbers for mass and speed as well as our system: This is a skater-earth system.

11. Place the $10-\mathrm{kg}$ skater at $6-\mathrm{m}$ and start the timer when you hit play. Pause both timer and sim when the skater is at $4-\mathrm{m}, 2-\mathrm{m}, 0-\mathrm{m}$, and $6-\mathrm{m}$. Record the height, speed, and time in the table below. Continue recording until you've reached 45 -s.

| Time | Height | Velocity |
| :---: | :---: | :---: |
| 0-s | 6-m | $0-\mathrm{m} / \mathrm{s}$ |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

12. Calculate the potential energy, kinetic energy, and total energy of the system using the data from \#10.

| Time <br> (x-axis) | Potential Energy <br> (y-axis) | Kinetic Energy <br> (y-axis) | Thermal Energy <br> (y-axis) | Total Energy <br> (y-axis) |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

13. Graph the four data sets in \#11 using Logger Pro. Follow the same procedure as before. Make the thermal energy a linear fit.
14. You are now finished with the experiment itself. Now type a formal lab report to present this information. Be sure to follow the rubric for the lab report attached to this assignment.
