Concentration

Students build an understanding of solution concentration by varying amounts of solute, solvent, and solution. Experimenting with several different chemicals in solid and concentrated solution form, students can discover qualitative and quantitative relationships between solution components.

Complex Controls

- The maximum amount of solute that can be added to the beaker is 7 moles; the shaker or dropper will not dispense any more solute. You can remove some solute with the drain faucet or you can remove all of the solute by clicking:

Remove Solute

- The dropper will add a concentrated solution of the solute. The concentration of the solution in the dropper can be measured by putting the probe below the dropper and pressing the red button to release solution.

Model Simplifications

- A simplified equation was used to calculate molarity: Moles of solute/Volume of solvent. This simplification was used because the effect of solute volume is relatively small and variations in solution volume due to addition of different solutes could lead to student confusion.
- The solute is always water.
- When the moles of solute per liter of water is above the saturation point, small crystals will form at the bottom of the beaker and the solution will be marked as saturated.
- The values used to calculate the solubility for each solute were taken from the CRC Handbook of Chemistry and Physics $91^{\text {st }}$ edition (http://www.hbcpnetbase.com). Drink mix was assumed to have the same solubility as sucrose.

| Solute | Formula | Molar Mass
 (g/mol) | Color | Solubility in
 water
 (mol/L) | Dropper
 Solution
 (mol/L) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Drink mix (sucrose) | $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ | 342.296 | red | $5.96 @ 20^{\circ} \mathrm{C}$ | 5.50 |
| Cobalt (II) nitrate | $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ | 182.942 | red | $5.64 @ 25^{\circ} \mathrm{C}$ | 5.00 |
| Cobalt chloride | CoCl_{2} | 129.839 | pink | $4.33 @ 25^{\circ} \mathrm{C}$ | 4.00 |
| Potassium dichromate | $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ | 294.185 | orange | $0.51 @ 25^{\circ} \mathrm{C}$ | 0.50 |
| Potassium chromate | $\mathrm{K}_{2} \mathrm{CrO}_{4}$ | 194.191 | yellow | $3.35 @ 25^{\circ} \mathrm{C}$ | 3.00 |
| Nickel (II) chloride | NiCl_{2} | 129.599 | green | $5.21 @ 25^{\circ} \mathrm{C}$ | 5.00 |
| Copper sulfate | CuSO_{4} | 159.609 | blue | $1.38 @ 25^{\circ} \mathrm{C}$ | 1.00 |
| Potassium permanganate | KMNO_{4} | 158.034 | purple | $0.48 @ 25^{\circ} \mathrm{C}$ | 0.40 |
| Sodium chloride | NaCl^{2} | 58.443 | no color | $6.15 @ 25^{\circ} \mathrm{C}$ | 5.50 |

Suggestions for Use

Sample Challenge Prompts

- Describe the relationship between the amount of solute, volume of solution, solution color, and solution concentration.
- Predict what happens to the concentration of a solution if:
- water is evaporated from beaker.
- water is added to the beaker.
- water is drained from the beaker.
- Explain what is meant by the term "saturated". Use evidence from the simulation to support your answer.
- Are all solutes equally soluble? Support your answer with examples from the simulation.
- Do all solutes form saturated solutions? Why or why not?

See all activities for Concentration here.
For more tips on using PhET sims with your students, see Tips for Using PhET.

