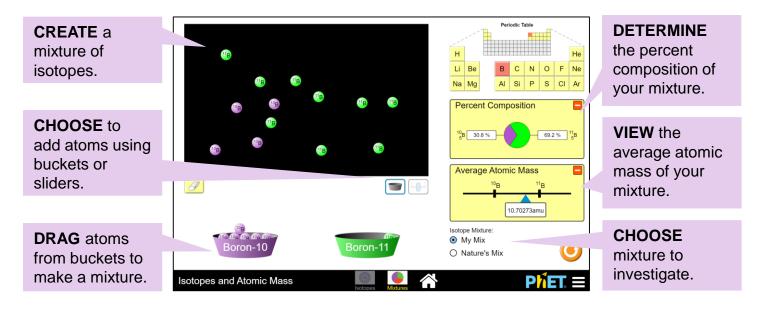


Isotopes and Atomic Mass


Isotopes Screen

Students build isotopes and investigate the atomic mass, mass number, and relative abundance of the isotope.

Mixtures Screen

Students create mixtures of using stable isotopes of the selected element, investigate how average atomic mass is calculated, and compare their mixtures to a view of an actual mixture of isotopes.

Insights into Student Use

- In college interviews, students wanted to select other common elements such as gold; investigation into other elements could be incorporated as part of an activity.
- On the Mixtures screen, students attempted to match Nature's Mix using My Mix view. This is not possible for all elements shown in the simulation.
- Students who need additional practice in interpreting atomic symbols, calculating mass number, or identifying the number of protons, neutrons, and electrons can investigate these concepts using the *Build an Atom* simulation.

Model Simplifications

- If you make an isotope that is not listed as stable in the NIST table, the nucleus shakes and the word "Unstable" appears under the nucleus.
- The atomic mass is relative to ¹²C, which has an atomic mass of 12 amu by definition. The atomic mass is shown only for stable isotopes, with the exception of ³H and ¹⁴C.
- The Mixtures screen shows only stable isotopes of a given element. Students can use these stable isotopes to investigate the relationship between percent abundance and average atomic mass of an element.
- In the Mixtures screen, the average atomic mass and percent abundance of each isotope are calculated based on the isotopes placed on the black screen using the buckets or sliders.
- In the Mixtures screen, Nature's Mix is not always shown as the exact ratio for some elements (for example, the exact ratio for helium would take 1 ³He isotope and 999,999 ⁴He isotopes).
- While the size of different atoms is not a main learning goal, the sim shows the relative electron cloud size for each element.

Suggestions for Use

Middle School

- What is an isotope? Be sure to include the following key terms in your explanation: mass number, protons, neutrons, electrons, element, atom.
- What particles determine the mass number of an atom? Why is the mass number always a whole number?
- Using the Mixtures screen, create a mixture of isotopes of boron that match the average atomic mass on the periodic table (10.811 amu). Which isotope is more abundant: boron-10 or boron-11?

High School

- Calculate the mass number and write the name and atomic symbol for these isotopes of hydrogen: protium (0 neutrons), deuterium (1 neutron), and tritium (2 neutrons).
- Your friend claims, "The chance of finding a specific isotope of an element is the same for all isotopes of that element". Explain if you agree or disagree with your friend using evidence from the simulation.
- Explain the relationship between isotope stability and percent abundance. Are unstable isotopes very abundant? Why or why not?
- Write a mathematical expression to show how the average atomic mass of an element is calculated.
- Identify relationships between the number of neutrons in an atom and the stability of the atom. Why might an atom be stable or unstable?
- Two stable isotopes of bromine exist in nature, bromine-79 and bromine-81, and the average atomic mass of bromine is 79.901. Predict the percent abundance of each isotope of bromine.